Abstract
AbstractA most fundamental goal in spintronics is to electrically tune highly efficient spin injectors and detectors, preferably compatible with nanoscale electronics and superconducting elements. These functionalities can be obtained using semiconductor quantum dots, spin-polarized by a ferromagnetic split-gate, which we demonstrate in a double quantum dot spin valve with two weakly coupled quantum dots in series, with individual split gates magnetized in parallel or anti-parallel. In tunneling magnetoresistance experiments we find a strongly reduced spin valve conductance for the two anti-parallel configurations, with a single dot polarization of ~27%. This value can be significantly improved by a small external magnetic field and optimized gate voltages, which results in a continuously electrically tunable quantum dot spin polarization of ±80%. Such versatile quantum dot spin filters are compatible with superconducting electronic elements and suitable for single spin projection and correlation experiments, as well as initialization and read-out of spin qubits.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献