Abstract
AbstractOne of the most notable features in repulsive particle based active matter systems is motility-induced-phase separation (MIPS) where a dense, often crystalline phase and low density fluid coexist. Most active matter studies involve time-dependent activity; however, there are many active systems where individual particles transition from living or moving to dead or nonmotile due to lack of fuel, infection, or poisoning. Here we consider an active matter particle system at densities where MIPS does not occur. When we add a small number of infected particles that can poison other particles, rendering them nonmotile, we find a rich variety of time dependent pattern formation, including MIPS, a wetting phase, and a fragmented state formed when mobile particles plow through a nonmotile packing. We map the patterns as a function of time scaled by epidemic duration, and show that the pattern formation is robust for a wide range of poisoning rates and activity levels. We also show that pattern formation does not occur in a random death model, but requires the promotion of nucleation by contact poisoning. Our results should be relevant to biological and active matter systems where there is some form of poisoning, death, or transition to nonmotility.
Funder
DOE | National Nuclear Security Administration
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference50 articles.
1. Marchetti, M. C. et al. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013).
2. Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys. 88, 045006 (2016).
3. Gompper, G. et al. The 2020 motile active matter roadmap. J. Phys.: Condens. Matter 32, 193001 (2020).
4. Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001).
5. Wang, G. et al. Emergent field-driven robot swarm states. Phys. Rev. Lett. 126, 108002 (2021).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Passive and active field theories for disease spreading;Journal of Physics A: Mathematical and Theoretical;2024-07-22
2. Noise-induced pattern evolution in thermochemical kinetics;The European Physical Journal Special Topics;2024-07-03