Abstract
AbstractDense active systems are widespread in nature, examples range from bacterial colonies to biological tissues. Dense clusters of active particles can be obtained by increasing the packing fraction of the system or taking advantage of a peculiar phenomenon named motility-induced phase separation (MIPS). In this work, we explore the phase diagram of a two-dimensional model of active glass and show that disordered active materials develop a rich collective behaviour encompassing both MIPS and glassiness. We find that, although the glassy state is almost indistinguishable from that of equilibrium glasses, the mechanisms leading to its fluidization do not have any equilibrium counterpart. Our results can be rationalized in terms of a crossover between a low-activity regime, where glassy dynamics is controlled by an effective temperature, and a high-activity regime, which drives the system towards MIPS.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献