Electromagnetic response of the surface states of a topological insulator nanowire embedded within a resonator

Author:

Haver Shimon ArieORCID,Ginossar EranORCID,de Graaf Sebastian E.,Grosfeld EytanORCID

Abstract

AbstractExploring the interplay between topological phases and photons opens new avenues for investigating novel quantum states. Here we show that superconducting resonators can serve as sensitive probes for properties of topological insulator nanowires (TINWs) embedded within them. By combining a static, controllable magnetic flux threading the TINW with an additional oscillating electromagnetic field applied perpendicularly, we show that orbital resonances can be generated and are reflected in periodic changes of the Q-factor of the resonator as a function of the flux. This response probes the confinement of the two-dimensional Dirac orbitals on the surface of the TINW, revealing their density of states and specific transition rules, as well as their dependence on the applied flux. Our approach represents a promising cross-disciplinary strategy for probing topological solid state materials using state-of-the-art photonic cavities, which would avoid the need for attaching contacts, thereby enabling access to electronic properties closer to the pristine topological states.

Funder

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3