Abstract
AbstractLattice geometry continues providing exotic topological phases in condensed matter physics. Exciting recent examples are the higher-order topological phases, manifesting via localized lower-dimensional boundary states. Moreover, flat electronic bands with a non-trivial topology arise in various lattices and can hold a finite superfluid density, bounded by the Chern number C. Here we consider attractive interaction in the dice lattice that hosts flat bands with C = ± 2 and show that the induced superconducting state exhibits a second-order topological phase with mixed singlet-triplet pairing. The second-order nature of the topological superconducting phase is revealed by the zero-energy Majorana bound states at the lattice corners. Hence, the topology of the normal state dictates the nature of the Majorana localization. These findings suggest that flat bands with a higher Chern number provide feasible platforms for inducing higher-order topological superconductivity.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献