Abstract
AbstractThe quantum superposition principle implies that a particle entering an interferometer evolves by simultaneously taking both arms. If a non-destructive, minimally-disturbing interaction coupling a particle property to a pointer is implemented on each arm while maintaining the path superposition, quantum theory predicts that, for a fixed state measured at the output port, certain particle properties can be associated with only one or the other path. This phenomenon is known as the quantum Cheshire cat effect. Here we report the realization of this prediction through joint observation of the spatial and polarization degrees of freedom of a single photon in the two respective arms of an interferometer. Significant pointer shifts ( ~ 50 microns), corresponding to measured weak values, are observed in each arm. This observation, involving coupling distinct properties of a quantum system in spatially separated regions, opens new possibilities for quantum information protocols and for tests of quantumness for mesoscopic systems.
Funder
Ministry of Electronics and Information technology
Department of Science and Technology, Ministry of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献