Carrier transport mechanisms of titanium nitride and titanium oxynitride electron-selective contact in silicon heterojunction solar cells

Author:

Liu Chenxi,Wang Yang,Liu Jinpei,Ma Runze,Liu Hao,Wang QiORCID,Fu Yujun,Liu QimingORCID,He DeyanORCID

Abstract

AbstractIt is widely accepted that an effective carrier-selective contact is indispensable for high performance crystalline silicon (c-Si) solar cells. However, the properties of these carrier-selective contact materials significantly differ from c-Si in terms of band gap, work function, lattice constant. Consequently, this gives rise to challenges such as band discontinuity and suspended bonds at the interface, which subsequently impact the specific carrier transport process and potentially lead to a reduction primarily in the fill factor at the device level. Titanium nitride (TiN) and titanium oxynitride (TiOxNy) have been employed as an electron-selective contact in both c-Si and perovskite solar cells, demonstrating their effectiveness in enhancing the performance of these devices. Based on the detailed characterizations of the band alignment, the carrier transport mechanisms are analyzed using multiple models, and the theoretical results are basically self-consistent through the verification of variable temperature experiments. These analytical methods can also provide solutions for analyzing the band structure and transport mechanism of diverse heterojunctions, ultimately contributing to the design and optimization of semiconductor heterojunction devices.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3