Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers

Author:

Ishibe Takafumi,Okuhata Ryo,Kaneko Tatsuya,Yoshiya Masato,Nakashima Seisuke,Ishida Akihiro,Nakamura YoshiakiORCID

Abstract

AbstractManaging heat dissipation is a necessity for nanoscale electronic devices with high-density interfaces, but despite considerable effort, it has been difficult to establish the phonon transport physics at the interface due to a “complex” interface layer. In contrast, the amorphous/epitaxial interface is expected to have almost no “complex” interface layer due to the lack of lattice mismatch strain and less associated defects. Here, we experimentally observe the extremely-small interface thermal resistance per unit area at the interface of the amorphous-germanium sulfide/epitaxial-lead telluride superlattice (~0.8 ± 4.0 × 10‒9 m2KW−1). Ab initio lattice dynamics calculations demonstrate that high phonon transmission through this interface can be predicted, like electron transport physics, from large vibron-phonon density-of-states overlapping and phonon group velocity similarity between propagon in amorphous layer and “conventional” phonon in crystal. This indicates that controlling phonon (or vibron) density-of-states and phonon group velocity similarity can be a comprehensive guideline to manage heat conduction in nanoscale systems.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3