Topological surface superconductivity in FeSe0.45Te0.55

Author:

Mascot Eric,Cocklin Sagen,Graham Martin,Mashkoori Mahdi,Rachel StephanORCID,Morr Dirk K.ORCID

Abstract

AbstractThe engineering of Majorana zero modes in topological superconductors, a paradigm for the realization of topological quantum computing and topology-based devices, has been hampered by the absence of materials with sufficiently large superconducting gaps. Recent experiments, however, have provided enthralling evidence for the existence of topological surface superconductivity in the iron-based superconductor FeSe0.45Te0.55 possessing a full s±-wave gap of a few meV. Here, we propose a mechanism for the emergence of topological superconductivity on the surface of FeSe0.45Te0.55 by demonstrating that the interplay between the s±-wave symmetry of the superconducting gap, surface magnetism, and a Rashba spin–orbit interaction gives rise to robust topological superconducting phases. Moreover, the proposed mechanism explains a series of experimentally observed hallmarks of topological superconductivity, such as the emergence of Majorana zero modes in the center of vortex cores and at the end of line defects, as well as of chiral Majorana edge modes along domain walls. We also propose that the spatial distribution of supercurrents near a domain wall is a characteristic signature measurable via a scanning superconducting quantum interference device that can distinguish between chiral Majorana edge modes and trivial in-gap states.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3