Enhancement and manipulation of optical interaction between coupled nano-waveguides in hollow-core fibers

Author:

Xie ShangranORCID,Gao Ran,Jiang Yi

Abstract

AbstractOptomechanical forces between evanescently coupled nano-waveguides serve as useful mechanisms to configure versatile functionalities of macro- and nano-devices. Strategies for boosting the optomechanical interaction strength are particularly compelling for the field of nanotechnologies. Here we show that the optical coupling strength between nano-waveguides can be enhanced by orders of magnitude when they are confined in hollow-core fibers. The presence of hollow core greatly increases the overlap integral between the nano-waveguides through excitation of the core modes. The excited higher-order core modes are able to mediate a long-range optomechanical interaction between the waveguides even though they are separated by tens of optical wavelength. It is found that the optical forces between the nanofibers can be switched from attractive to repulsive ones purely by tuning the gap between the nanofibers due to the optomechanical back-action effect induced by the higher-order core modes. The enhanced optomechanical coupling can be exploited to manipulate the collective eigenfrequencies of the coupled nano-waveguides via the optical spring effect. Our observation may find applications on the design of waveguide couplers embedded in the hollow core, or to realize miniaturized acoustic sensors.

Funder

Beijing Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3