Abstract
AbstractBound states in the continuum (BICs), which are spatially localized states with energies lying in the continuum of radiating modes, are discovered both in single- and few-body systems with suitably engineered spatial potentials and particle interactions. Here, we reveal a type of BICs that appear in anyonic systems. It is found that a pair of non-interacting anyons can perfectly concentrate on the boundary of a one-dimensional homogeneous lattice when the statistical angle is beyond a threshold. Such a bound state is embedded into the continuum of two-anyon scattering states, and is called as anyonic BICs. In contrast to conventional BICs, our proposed anyonic BICs purely stem from the statistics-induced correlations of two anyons, and do not need to engineer defect potentials or particle interactions. Furthermore, by mapping eigenstates of two anyons to modes of designed circuit networks, the anyonic BICs are experimentally simulated by measuring spatial impedance distributions and associated frequency responses. Our results enrich the understanding of anyons and BICs, and can inspire future studies on exploring correlated BICs with other mechanisms.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference62 articles.
1. von Neuman, J. & Wigner, E. Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929).
2. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).
3. Koshelev, K., Bogdanov, A. & Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 64, 836–842 (2019).
4. Marinica, D. C., Borisov, A. G. & Shabanov, S. V. Bound states in the continuum in photonics. Phys. Rev. Lett. 100, 183902 (2008).
5. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献