Realising and compressing quantum circuits with quantum reservoir computing

Author:

Ghosh SanjibORCID,Krisnanda Tanjung,Paterek Tomasz,Liew Timothy C. H.

Abstract

AbstractQuantum computers require precise control over parameters and careful engineering of the underlying physical system. In contrast, neural networks have evolved to tolerate imprecision and inhomogeneity. Here, using a reservoir computing architecture we show how a random network of quantum nodes can be used as a robust hardware for quantum computing. Our network architecture induces quantum operations by optimising only a single layer of quantum nodes, a key advantage over the traditional neural networks where many layers of neurons have to be optimised. We demonstrate how a single network can induce different quantum gates, including a universal gate set. Moreover, in the few-qubit regime, we show that sequences of multiple quantum gates in quantum circuits can be compressed with a single operation, potentially reducing the operation time and complexity. As the key resource is a random network of nodes, with no specific topology or structure, this architecture is a hardware friendly alternative paradigm for quantum computation.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum next generation reservoir computing: an efficient quantum algorithm for forecasting quantum dynamics;Quantum Machine Intelligence;2024-09-09

2. Application of Quantum Extreme Learning Machines for QoS Prediction of Elevators’ Software in an Industrial Context;Companion Proceedings of the 32nd ACM International Conference on the Foundations of Software Engineering;2024-07-10

3. Complex quantum networks: a topical review;Journal of Physics A: Mathematical and Theoretical;2024-05-24

4. Dissipation as a resource for Quantum Reservoir Computing;Quantum;2024-03-20

5. Quantum-classical hybrid information processing via a single quantum system;Physical Review Research;2023-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3