Abstract
AbstractIn recent experiments on conductance of one-dimensional (1D) channels in ultra-clean samples, a diverse set of plateaus were found at fractions of the quantum of conductance in zero magnetic field. We consider a discrete model of strongly interacting electrons in a clean 1D system where the current between weak tunneling contacts is carried by fractionally charged solutions. While in the spinless case conductance remains unaffected by the interaction, as is typical for the strongly interacting clean 1D systems, we demonstrate that in the spinful case the peak conductance takes fractional values that depend on the filling factor of the 1D channel.
Funder
RCUK | Engineering and Physical Sciences Research Council
Leverhulme Trust
Publisher
Springer Science and Business Media LLC