An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb

Author:

Niu Rui,Wan Shuai,Li Wenjian,Wang Pi-Yu,Sun Fang-WenORCID,Bo Fang,Liu JunqiuORCID,Guo Guang-Can,Dong Chun-HuaORCID

Abstract

AbstractOptical frequency combs provide a powerful tool for precise measurement of the optical frequency, holding significant importance in fields such as spectroscopy, optical communication and optical clock. The frequency stability of the comb line determines the precision of the frequency measurement, but the delicate interplay between high precision, low power consumption and integration still needs to be optimized. To this aim, here we demonstrate a frequency measurement scheme based on a fully stabilized electro-optic comb, in which the pump laser frequency and repetition rate are independently locked to the atomic transition and microwave signal. The measurement precision of the demonstrated wavemeter can reach sub-kHz-level, and the parallel measurement of multiple wavelengths can be performed. Therefore, by combining the technical scheme reported here with advanced integrated functional devices, our system is expected to provide a feasible solution for chip-scale frequency precision measurement and reference.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3