Revealing inverted chirality of hidden domain wall states in multiband systems without topological transition

Author:

Jeong Seung-GyoORCID,Han Sang-Hoon,Kim Tae-HwanORCID,Cheon SangmoORCID

Abstract

AbstractChirality, a fundamental concept from biological molecules to advanced materials, is prevalent in nature. Yet, its intricate behavior in specific topological systems remains poorly understood. Here, we investigate the emergence of hidden chiral domain wall states using a double-chain Su-Schrieffer-Heeger model with interchain coupling specifically designed to break chiral symmetry. Our phase diagram reveals single-gap and double-gap phases based on electronic structure, where transitions occur without topological phase changes. In the single-gap phase, we reproduce chiral domain wall states, akin to chiral solitons in the double-chain model, where chirality is encoded in the spectrum and topological charge pumping. In the double-gap phase, we identify hidden chiral domain wall states exhibiting opposite chirality to the domain wall states in the single-gap phase, where the opposite chirality is confirmed through spectrum inversion and charge pumping as the corresponding domain wall slowly moves. By engineering gap structures, we demonstrate control over hidden chiral domain states. Our findings open avenues to investigate novel topological systems with broken chiral symmetry and potential applications in diverse systems.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3