Thermosuperrepellency of a hot substrate caused by vapour percolation

Author:

Schmidt J. BenediktORCID,Hofmann Julian,Tenzer Fabian M.,Breitenbach JanORCID,Tropea CameronORCID,Roisman Ilia V.ORCID

Abstract

AbstractDrop rebound after collision with a very hot substrate is usually attributed to the Leidenfrost effect, characterized by intensive film boiling in a thin vapour gap between the liquid and substrate. Similarly, drop impact onto a cold superhydrophobic substrate leads to a complete drop rebound, despite partial wetting of the substrate. Here we study the repellent properties of hot smooth hydrophilic substrates in the nucleate boiling, non-Leidenfrost regime and discover that the thermally induced repellency is associated with vapour percolation on the substrate. The wetting structure in the presence of the percolating vapour rivulets is analogous to the Cassie-Baxter wetting mode, which is a necessary condition for the repellency in the isothermal case. The theoretical predictions for the threshold temperature for vapour percolation agree well with the experimental data for drop rebound and correspond to the minimum heat flux when spray cooling.

Funder

Deutsche Forschungsgemeinschaft

Industrieverband Massivumformung e.V.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methodology for modeling spray cooling of a cylindrical tube heated in the film boiling regime;International Journal of Multiphase Flow;2024-01

2. Review of the dynamic Leidenfrost point temperature for droplet impact on a heated solid surface;International Journal of Heat and Mass Transfer;2023-12

3. Modelling of drop and spray impact in the transitional boiling regime;International Journal of Heat and Mass Transfer;2023-12

4. Alcohol-induced elevation in the dynamic Leidenfrost point temperature for water droplet impact;International Journal of Heat and Mass Transfer;2023-11

5. Heat flux during a drop train impact in the drop rebound regime;Experimental Thermal and Fluid Science;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3