Linear programs for entanglement and key distribution in the quantum internet

Author:

Bäuml Stefan,Azuma Koji,Kato Go,Elkouss David

Abstract

AbstractQuantum networks will allow to implement communication tasks beyond the reach of their classical counterparts. A pressing and necessary issue for the design of quantum network protocols is the quantification of the rates at which these tasks can be performed. Here, we propose a simple recipe that yields efficiently computable lower and upper bounds on the maximum achievable rates. For this we make use of the max-flow min-cut theorem and its generalization to multi-commodity flows to obtain linear programs. We exemplify our recipe deriving the linear programs for bipartite settings, settings where multiple pairs of users obtain entanglement in parallel as well as multipartite settings, covering almost all known situations. We also make use of a generalization of the concept of paths between user pairs in a network to Steiner trees spanning a group of users wishing to establish Greenberger-Horne-Zeilinger states.

Funder

MEXT | Japan Science and Technology Agency

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3