Quasi-localization and Wannier obstruction in partially flat bands

Author:

Park Jin-HongORCID,Rhim Jun-WonORCID

Abstract

AbstractThe localized nature of a flat band is understood by the existence of a compact localized eigenstate. However, the localization properties of a partially flat band, ubiquitous in surface modes of topological semimetals, have been unknown. We show that the partially flat band is characterized by a non-normalizable quasi-compact localized state (Q-CLS), which is compactly localized along several directions but extended in at least one direction. The partially flat band develops at momenta where normalizable Bloch wave functions can be obtained from a linear combination of the non-normalizable Q-CLSs. Outside this momentum region, a ghost flat band, unseen from the band structure, is introduced based on a counting argument. Then, we demonstrate that the Wannier function corresponding to the partially flat band exhibits an algebraic decay behavior. Namely, one can have the Wannier obstruction in a band with a vanishing Chern number if it is partially flat. Finally, we develop the construction scheme of a tight-binding model for a topological semimetal by designing a Q-CLS.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3