Accelerated quantum Monte Carlo with probabilistic computers

Author:

Chowdhury ShuvroORCID,Camsari Kerem Y.,Datta Supriyo

Abstract

AbstractQuantum Monte Carlo (QMC) techniques are widely used in a variety of scientific problems and much work has been dedicated to developing optimized algorithms that can accelerate QMC on standard processors (CPU). With the advent of various special purpose devices and domain specific hardware, it has become increasingly important to establish clear benchmarks of what improvements these technologies offer compared to existing technologies. In this paper, we demonstrate 2 to 3 orders of magnitude acceleration of a standard QMC algorithm using a specially designed digital processor, and a further 2 to 3 orders of magnitude by mapping it to a clockless analog processor. Our demonstration provides a roadmap for 5 to 6 orders of magnitude acceleration for a transverse field Ising model (TFIM) and could possibly be extended to other QMC models as well. The clockless analog hardware can be viewed as the classical counterpart of the quantum annealer and provides performance within a factor of < 10 of the latter. The convergence time for the clockless analog hardware scales with the number of qubits as ∼ N, improving the ∼ N2 scaling for CPU implementations, but appears worse than that reported for quantum annealers by D-Wave.

Funder

United States Department of Defense | United States Navy | ONR | Office of Naval Research Global

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3