Tutorial: a beginner’s guide to building a representative model of dynamical systems using the adjoint method

Author:

Lettermann LeonORCID,Jurado Alejandro,Betz TimoORCID,Wörgötter Florentin,Herzog SebastianORCID

Abstract

AbstractBuilding a representative model of a complex dynamical system from empirical evidence remains a highly challenging problem. Classically, these models are described by systems of differential equations that depend on parameters that need to be optimized by comparison with data. In this tutorial, we introduce the most common multi-parameter estimation techniques, highlighting their successes and limitations. We demonstrate how to use the adjoint method, which allows efficient handling of large systems with many unknown parameters, and present prototypical examples across several fields of physics. Our primary objective is to provide a practical introduction to adjoint optimization, catering for a broad audience of scientists and engineers.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Reference99 articles.

1. Bianconi, G. et al. Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics. J. Phys. 4, 010201 (2023).

2. Wikle, C. K. & Berliner, L. M. A Bayesian tutorial for data assimilation. Physica D 230, 1–16 (2007).

3. Asch, M., Bocquet, M. & Nodet, M. Data Assimilation (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016).

4. Nadler, P., Arcucci, R. & Guo, Y.-K. Data assimilation for parameter estimation in economic modelling. In 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) 649–656 (IEEE, Sorrento, Italy, 2019).

5. Bettencourt, L. M. A., Ribeiro, R. M., Chowell, G., Lant, T. & Castillo-Chavez, C. Towards real time epidemiology: data assimilation, modeling and anomaly detection of health surveillance data streams. Intell. Secur. Inform. 4506, 79–90 (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3