Abstract
AbstractQuantum optics with giant atoms has provided a new paradigm to study photon scatterings. In this work, we investigate the nontrivial single-photon scattering properties of giant atoms being an effective platform to realize nonreciprocal and chiral quantum optics. For two-level giant atoms, we identify the condition for nonreciprocal transmission: the external atomic dissipation is further required other than the breaking of time-reversal symmetry by local coupling phases. Especially, in the non-Markovian regime, unconventional revival peaks periodically appear in the reflection spectrum. To explore more interesting scattering behaviors, we extend the two-level giant-atom system to Δ-type and ∇ -type three-level giant atoms coupled to double waveguides with different physical mechanisms to realize nonreciprocal and chiral scatterings. Our proposed giant-atom structures have potential applications of high-efficiency targeted routers that can transport single photons to any desired port deterministically and circulators that can transport single photons between four ports in a cyclic way.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献