Abstract
AbstractSmall angle scattering techniques have now been routinely used to quantitatively determine the potential of mean force in colloidal suspensions. However the numerical accuracy of data interpretation is often compounded by the approximations adopted by liquid state analytical theories. To circumvent this long standing issue, here we outline a machine learning strategy for determining the effective interaction in the condensed phases of matter using scattering. Via a case study of colloidal suspensions, we show that the effective potential can be probabilistically inferred from the scattering spectra without any restriction imposed by model assumptions. Comparisons to existing parametric approaches demonstrate the superior performance of this method in accuracy, efficiency, and applicability. This method can effectively enable quantification of interaction in highly correlated systems using scattering and diffraction experiments.
Funder
US Department of Energy Scientific User Facilities
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献