Abstract
AbstractMeasurements of ultrahigh-fidelity absorption spectra can help validate quantum theory, engineer ultracold chemistry, and remotely sense atmospheres. Recent achievements in cavity-enhanced spectroscopy using either frequency-based dispersion or time-based absorption approaches have set new records for accuracy with uncertainties at the sub-per-mil level. However, laser scanning or susceptibility to nonlinearities limits their ultimate performance. Here we present cavity buildup dispersion spectroscopy (CBDS), probing the CO molecule as an example, in which the dispersive frequency shift of a cavity resonance is encoded in the cavity’s transient response to a phase-locked non-resonant laser excitation. Beating between optical frequencies during buildup exactly localizes detuning from mode center, and thus enables single-shot dispersion measurements. CBDS can yield an accuracy limited by the chosen frequency standard and measurement duration and is currently 50 times less susceptible to detection nonlinearity compared to intensity-based methods. Moreover, CBDS is significantly faster than previous frequency-based cavity-enhanced methods. The generality of CBDS shows promise for improving fundamental research into a variety of light–matter interactions.
Funder
Narodowe Centrum Nauki
United States Department of Commerce | National Institute of Standards and Technology
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献