Cavity buildup dispersion spectroscopy

Author:

Cygan AgataORCID,Fleisher Adam J.ORCID,Ciuryło RomanORCID,Gillis Keith A.,Hodges Joseph T.,Lisak DanielORCID

Abstract

AbstractMeasurements of ultrahigh-fidelity absorption spectra can help validate quantum theory, engineer ultracold chemistry, and remotely sense atmospheres. Recent achievements in cavity-enhanced spectroscopy using either frequency-based dispersion or time-based absorption approaches have set new records for accuracy with uncertainties at the sub-per-mil level. However, laser scanning or susceptibility to nonlinearities limits their ultimate performance. Here we present cavity buildup dispersion spectroscopy (CBDS), probing the CO molecule as an example, in which the dispersive frequency shift of a cavity resonance is encoded in the cavity’s transient response to a phase-locked non-resonant laser excitation. Beating between optical frequencies during buildup exactly localizes detuning from mode center, and thus enables single-shot dispersion measurements. CBDS can yield an accuracy limited by the chosen frequency standard and measurement duration and is currently 50 times less susceptible to detection nonlinearity compared to intensity-based methods. Moreover, CBDS is significantly faster than previous frequency-based cavity-enhanced methods. The generality of CBDS shows promise for improving fundamental research into a variety of light–matter interactions.

Funder

Narodowe Centrum Nauki

United States Department of Commerce | National Institute of Standards and Technology

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3