Abstract
AbstractIn quantum materials, the electronic interaction and the electron-phonon coupling are, in general, two essential ingredients, the combined impact of which may drive exotic phases. Recently, an anomalously strong electron-electron attraction, likely mediated by phonons, has been proposed in one-dimensional copper-oxide chain Ba2−xSrxCuO3+δ. Yet, it is unclear how this strong near-neighbor attraction V influences the superconductivity pairing in the system. Here we perform accurate many-body calculations to study the extended Hubbard model with on-site Coulomb repulsion U > 0 and near-neighbor attraction V < 0 that could well describe the cuprate chain and likely other similar transition-metal materials with both strong correlations and lattice effects. We find a rich quantum phase diagram containing an intriguing Tomonaga-Luttinger liquid phase — besides the spin density wave and various phase separation phases — that can host dominant spin-triplet pairing correlations and divergent superconductive susceptibility. Upon doping, the spin-triplet superconducting regime can be further broadened, offering a feasible mechanism to realize p-wave superconductivity in realistic cuprate chains.
Funder
DOE | SC | Basic Energy Sciences
National Natural Science Foundation of China
CAS Project for Young Scientists in Basic Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献