Viscoelastic phase separation in biological cells

Author:

Tanaka HajimeORCID

Abstract

AbstractBiological phase separation forming membraneless organelles in cytoplasm and nucleus has attracted considerable attention. Liquid-like condensates are often created as spherical droplets. However, various condensates with network-like morphologies, including protein granules, localisation bodies, and centrosome assemblies, have recently been discovered in cells. Therefore, what controls the morphology of biological phase separation is a critical issue but remains elusive. Here, based on the knowledge of viscoelastic phase separation in soft matter physics, we propose that the difference in the molecular dynamics between the two phases controls the condensate morphology. Small and large mobility differences between the two phases should lead to droplet-like and network-like morphologies of the minority phase, respectively. We show that asymmetric partitioning of high-molecular-weight unstructured polymers (e.g., messenger RNA) between the two phases increases the dynamic asymmetry between the phases to form a network-like pattern of the slower phase, which may further be stabilised through inter-polymer binding.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3