Enhancing the expressivity of quantum neural networks with residual connections

Author:

Wen JingweiORCID,Huang Zhiguo,Cai Dunbo,Qian LingORCID

Abstract

AbstractIn noisy intermediate-scale quantum era, the research on the combination of artificial intelligence and quantum computing has been greatly developed. Here we propose a quantum circuit-based algorithm to implement quantum residual neural networks, where the residual connection channels are constructed by introducing auxiliary qubits to data-encoding and trainable blocks in quantum neural networks. We prove that when this particular network architecture is applied to a l-layer data-encoding, the number of frequency generation forms extends from one, namely the difference of the sum of generator eigenvalues, to $${{{{{{{\mathcal{O}}}}}}}}({l}^{2})$$ O ( l 2 ) , and the flexibility in adjusting Fourier coefficients can also be improved. It indicates that residual encoding can achieve better spectral richness and enhance the expressivity of various parameterized quantum circuits. Extensive numerical demonstrations in regression tasks and image classification are offered. Our work lays foundation for the complete quantum implementation of classical residual neural networks and offers a quantum feature map strategy for quantum machine learning.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pediatric TSC-Related Epilepsy Classification from Clinical MR Images Using Quantum Neural Network;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3