Abstract
AbstractThe study of molecular valence electron dynamics and their coupling with nuclear motion is one of the frontiers of ultrafast physics and ultrafast chemistry. With time-resolved strong-field ion momentum spectroscopy, we study electron valence and nucleus wavepacket evolution on a femtosecond timescale. Two orientation-dependent bond-breaks of N2O molecules from the same electronic state are studied, and the influence of orbital hybridization and polarization effect during molecular breaking is analyzed based on the measured time-resolved asymmetric Pzsum distributions, allowing a visual representation of electron localization during the dissociation of molecules into ions and atoms. Comparison of experimental and theoretical results on orientation-dependent dissociation dynamics allows us to understand how nuclear motions evolve during fragmentation and to control ultrafast molecular reactions.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献