Towards altering sound frequency at will by a linear meta-layer with time-varying and quantized properties

Author:

Zhang YuminORCID,Wu Keming,Wang Chunqi,Huang LixiORCID

Abstract

AbstractWave frequency is a critical parameter for applications ranging from human hearing, acoustic non-reciprocity, medical imaging to quantum of energy in matter. Frequency alteration holds the promise of breaking limits imposed by the physics laws such as Rayleigh’s criterion and Planck–Einstein relation. We introduce a linear mechanism to convert the wave frequency to any value at will by creating a digitally pre-defined, time-varying material property. The device is based on an electromagnetic diaphragm with a MOSFET-controlled shunt circuit. The measured ratio of acoustic impedance modulation is up to 45, much higher than nonlinearity-based techniques. A significant portion of the incoming source frequency is scattered to sidebands. We demonstrate the conversion of audible sounds to infrasound and ultrasound, respectively, and a monochromatic tone to white noise by a randomized MOSFET time sequence, raising the prospect of applications such as super-resolution imaging, deep sub-wavelength energy flow control, and encrypted underwater communication.

Funder

National Natural Science Foundation of China

Hangzhou Science and Technology Bureau

Research Grants Council, University Grants Committee

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Reference50 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3