Abstract
AbstractAlthough the dielectric constant of plasma depends on electron collision time as well as wavelength and plasma density, experimental studies on the electron collision time and its effects on laser-matter interactions are lacking. Here, we report an anomalous regime of laser-matter interactions generated by wavelength dependence (1.2–2.3 µm) of the electron collision time in plasma for laser filamentation in solids. Our experiments using time-resolved interferometry reveal that electron collision times are small (<1 femtosecond) and decrease as the driver wavelength increases, which creates a previously-unobserved regime of light defocusing in plasma: longer wavelengths have less plasma defocusing. This anomalous plasma defocusing is counterbalanced by light diffraction which is greater at longer wavelengths, resulting in almost constant plasma densities with wavelength. Our wavelength-scaled study suggests that both the plasma density and electron collision time should be systematically investigated for a better understanding of strong field laser-matter interactions in solids.
Funder
NSF | Directorate for Mathematical & Physical Sciences | Division of Physics
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献