Wavelength scaling of electron collision time in plasma for strong field laser-matter interactions in solids

Author:

Nagar Garima C.,Dempsey Dennis,Shim BongguORCID

Abstract

AbstractAlthough the dielectric constant of plasma depends on electron collision time as well as wavelength and plasma density, experimental studies on the electron collision time and its effects on laser-matter interactions are lacking. Here, we report an anomalous regime of laser-matter interactions generated by wavelength dependence (1.2–2.3 µm) of the electron collision time in plasma for laser filamentation in solids. Our experiments using time-resolved interferometry reveal that electron collision times are small (<1 femtosecond) and decrease as the driver wavelength increases, which creates a previously-unobserved regime of light defocusing in plasma: longer wavelengths have less plasma defocusing. This anomalous plasma defocusing is counterbalanced by light diffraction which is greater at longer wavelengths, resulting in almost constant plasma densities with wavelength. Our wavelength-scaled study suggests that both the plasma density and electron collision time should be systematically investigated for a better understanding of strong field laser-matter interactions in solids.

Funder

NSF | Directorate for Mathematical & Physical Sciences | Division of Physics

United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3