Abstract
AbstractExploring the source of free energy is of practical use for thermodynamical systems. In the classical regime, the free energy change is independent of magnetism, as the Lorentz force is conservative. In contrast, here we find that the free energy change can be amplified by adding a magnetic field to driven quantum systems. Taking a recent experimental system as an example, the predicted amplification becomes 3-fold when adding a 10-tesla magnetic field under temperature 316 nanoKelvin. We further uncover the mechanism by examining the driving process. Through extending the path integral approach for quantum thermodynamics, we obtain a generalized free energy equality for both closed and open quantum systems. The equality reveals a decomposition on the source of the free energy change: one is the quantum work functional, and the other emerges from the magnetic flux passing through a closed loop of propagators. The result suggests a distinct quantum effect of magnetic flux and supports to extract additional free energy from the magnetic field.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献