Disorder scattering in classical flat channel transport of particles between twisted magnetic square patterns

Author:

Rossi Anna M. E. B.ORCID,Ernst AdrianORCID,Dörfler Magdalena,Fischer Thomas M.ORCID

Abstract

AbstractWe measure the trajectories of macroscopic magnetic particles pulled against gravity between twisted alternating magnetic square patterns in a superposed homogeneous magnetic field normal to both patterns. The two patterns are built from a set of magentic cubes having a distribution of magnetization. The magnetic potential between the patterns is a sum of three contributions: two being periodic on two lattices with different magnitude and orientation, and the third random contribution arising from the distribution of magnetization of the cubes. As one varies the twist angle between the two patterns each time the twist angle coincides with a magic twist angle one of the two periodic lattices becomes a sublattice of the other lattice. Simulations of particles moving through patterns with a precise cube magnetization produce pronounced mobility peaks near magic twist angles that are associated with flat channels. Weak random fluctuations of the cube magnetization in the experiment and the simulations cause enhanced random disorder of the potential and reduce the mobility by scattering particles into the interior of the twisted Wigner Seitz cells. The mobility undergoes an Anderson transition from magic to generic behavior as the magnetization disorder increases beyond half of a percent of the cube magnetization.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3