Abstract
AbstractGraphene on hexagonal boron nitride (hBN) can exhibit a topological phase via mutual crystallographic alignment. Recent measurements of nonlocal resistance (Rnl) near the secondary Dirac point (SDP) in ballistic graphene/hBN superlattices have been interpreted as arising due to the quantum valley Hall state. We report hBN/graphene/hBN superlattices in which Rnl at SDP is negligible, but below 60 K approaches the value of h/2e2 in zero magnetic field at the primary Dirac point with a characteristic decay length of 2 μm. Furthermore, nonlocal transport transmission probabilities based on the Landauer-Büttiker formalism show evidence for spin-degenerate ballistic valley-helical edge modes, which are key for the development of valleytronics.
Funder
China Scholarship Council
Consejería de Educación, Junta de Castilla y León
Fundacja na rzecz Nauki Polskiej
Narodowe Centrum Nauki
Royal Society
RCUK | Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献