Abstract
AbstractOur society’s appetite for ultra-high bandwidth communication networks and high-power optical sources, together with recent breakthroughs in mode multiplexing/demultiplexing schemes, forced the photonics community to reconsider the deployment of nonlinear multimode systems. These developments pose fundamental challenges stemming from the complexity of nonlinear mode-mode mixing by which they exchange energy in the process towards an equilibrium Rayleigh-Jeans (RJ) distribution. Here we develop a universal one-parameter scaling theory for the relaxation rates of out-of-equilibrium excitations towards their RJ thermal state. The theory predicts an exponential suppression of the rates with increasing disorder due to the formation of stable localization clusters resisting the nonlinear mode-mode interactions that tend to separate them. For low optical temperatures, the rates experience a crossover from linear to nonlinear temperature dependence which reflects a disorder-induced reorganization of the low frequency eigenmodes. Our theory will guide the design of nonlinear multimode photonic networks with tailored relaxation-scales.
Funder
Simons Foundation
Consejo Nacional de Investigaciones Científicas y Técnicas
National University of the Northeast | Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献