Abstract
AbstractPhase separation in the nanometer- to micrometer-scale is characteristic for correlated materials, for example, high temperature superconductors, colossal magnetoresistance manganites, Mott insulators, etc. Resolving the electronic structure with spatially-resolved information is critical for revealing the fundamental physics of such inhomogeneous systems yet this is challenging experimentally. Here by using nanometer- and micrometer-spot angle-resolved photoemission spectroscopies (NanoARPES and MicroARPES), we reveal the spatially-resolved electronic structure in the stripe phase of IrTe2. Each separated domain shows two-fold symmetric electronic structure with the mirror axis aligned along 3 equivalent directions, and 6 × 1 replicas are clearly identified. Moreover, such electronic structure inhomogeneity disappears across the stripe phase transition, suggesting that electronic phase with broken symmetry induced by the 6 × 1 modulation is directly related to the stripe phase transition of IrTe2. Our work demonstrates the capability of NanoARPES and MicroARPES in elucidating the fundamental physics of phase-separated materials.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献