Abstract
AbstractAlthough many experiments imply that oxygen orbitals play an essential role in the high-temperature superconducting cuprates, their precise role in collective spin and charge excitations and superconductivity is not yet fully understood. Here, we study the doping-dependent dynamical spin and charge structure factors of single and multi-orbital (pd) models for doped one-dimensional corner-shared spin-chain cuprates using several numerically exact methods. In doing so, we determine the orbital composition of the collective spin and charge excitations of cuprates, with important implications for our understanding of these materials. For example, we observe a particle-hole asymmetry in the orbital-resolved charge excitations, which is directly relevant to resonant inelastic x-ray scattering experiments and not captured by the single-band Hubbard model. Our results imply that one must explicitly include the oxygen degrees of freedom in order to fully understand some experimental observations on cuprate materials.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference72 articles.
1. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
2. LeBlanc, J. P. F. et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms. Phys. Rev. X 5, 041041 (2015).
3. Jiang, H.-C. & Devereaux, T. P. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping $${t}^{\prime}$$. Science 365, 1424–1428 (2019).
4. Qin, M. et al. Absence of superconductivity in the pure two-dimensional Hubbard model. Phys. Rev. X 10, 031016 (2020).
5. Maier, T. A., Jarrell, M., Schulthess, T. C., Kent, P. R. C. & White, J. B. Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model. Phys. Rev. Lett. 95, 237001 (2005).
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献