Dimension reduction approach for understanding resource-flow resilience to climate change

Author:

Salgado ArielORCID,He YiyiORCID,Radke John,Ganguly Auroop RatanORCID,Gonzalez Marta C.ORCID

Abstract

AbstractNetworked dynamics are essential for assessing the resilience of lifeline infrastructures. The dimension-reduction approach was designed as an efficient way to map the high-dimensional dynamics to a low-dimensional representation capturing system-level behavior while taking into consideration network structure. However, its application to socio-technical systems has not been considered yet. Here, we extend the dimension-reduction approach to resource-flow dynamics in multiplex networks. We apply it to the San Francisco fuel transportation network, considering the flow between refineries, terminals and gas stations. We capture the aggregated dynamics between the facilities of each type and identify macroscopic conditions for the system to supply a given demand of fuel. By considering multiple sea level rise scenarios between 2020 and 2100, we address the impact of coastal flooding due to climate change on the maximum suppliable demand. Finally, we analyze the system’s transient response to production failures, investigating the temporary interruption in production and the duration it takes for complete demand satisfaction to become unachievable after the interruption.

Funder

United States Department of Defense | Strategic Environmental Research and Development Program

C3.ai grant Multiscale analysis for Improved Risk Assessment of Wildfires facilitated by Data and Computation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3