Abstract
AbstractQuantum conference key agreement is an important cryptographic primitive for future quantum network. Realizing this primitive requires high-brightness and robust multiphoton entanglement sources, which is challenging in experiment and unpractical in application because of limited transmission distance caused by channel loss. Here we report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel. With spatial multiplexing nature and adaptive operation, our protocol can break key rate bounds on quantum communication over quantum network without quantum memory. Compared with previous work, our protocol shows superiority in key rate and transmission distance within the state-of-the-art technology. Furthermore, we analyse the security of our protocol in the composable framework and evaluate its performance in the finite-size regime to show practicality. Based on our results, we anticipate that our protocol will play an important role in constructing multipartite quantum network.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献