Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy

Author:

Freitag Norbert H.ORCID,Reiche Christopher F.,Neu Volker,Devi Parul,Burkhardt Ulrich,Felser ClaudiaORCID,Wolf DanielORCID,Lubk AxelORCID,Büchner Bernd,Mühl ThomasORCID

Abstract

AbstractMagnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3