Coherent interferometric control of strongly-coupled nano-electromechanical resonators

Author:

Correia Franck,Jara-Schulz GladysORCID,Madiot GuilhemORCID,Barbay SylvainORCID,Braive RemyORCID

Abstract

AbstractThe interferometric control of dissipation in a two-port system is a fruitful concept enabling the enhancement or cancellation of the input amplitudes as a function of their relative phases. Here, beyond the canonical configuration of Coherent Perfect Absorption (CPA), we apply this concept to two simultaneously excited strongly-coupled nanoscale electromechanical resonators submitted to independently controlled phase-shifted excitations. Both subsystems are read simultaneously by optical means allowing us to completely reconstruct the signature of coherent annihilation or amplification on both quadrature. We evidence that the mechanical modes amplitude can be enhanced or inhibited with respect to the case of single port excitation while phase experiences strong variations with the excitation imbalance and phase difference. Meanwhile, phase singularities with opposite topological charges are observed for mechanical normal modes. Close to the phase singularity, we demonstrate that the input of a weak phase modulation induces a large, pure phase modulation of the normal mode. These experimental demonstrations are fully modelled via the mechanical dynamical equations of our system. The interferometric control may open avenues for low-power amplitude controlled phase modulation schemes and vice-versa for potential switches and logical gates.

Funder

Agence Nationale de la Recherche

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3