Abstract
AbstractConventional ways of confining charges in semiconductors employ advanced lithographic and crystal-growth techniques. The construction of micro/nano-scale structures is also essential for manipulating spins. However, existing techniques are not always flexible enough to control spins in appropriate positions and timings. Here we report an alternative mechanism, which enables us to design temporal and reconfigurable low-dimensional potentials. The formation of photo-induced potential dimples is deduced from time and spatially-resolved Kerr rotation measurements performed on a GaAs quantum well. Two-dimensional images of spin distributions reveal that the photo-injected electron spins in a small area illuminated by a pump light survive for a time that is two orders of magnitude longer than typical recombination lifetimes. The Kerr rotation dependence on the pump laser conditions implies that the temporally generated dimple-shaped potential profile induced by remote charges effectively confines the electrons and enhances the spin lifetime determined by fluctuating spin-orbit effective magnetic fields.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference35 articles.
1. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
2. D’yakonov, M. I. & Perel’, V. I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026 (1972).
3. Bychkov, Y. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JTEP 39, 66 (1984).
4. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580 (1955).
5. Schliemann, J. & Loss, D. Anisotropic transport in a two-dimensional electron gas in the presence of spin–orbit coupling. Phys. Rev. B 68, 165311 (2003).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献