Abstract
Abstract
Background
Weight for height has been used in the past as an indicator of obesity to report that prenatal exposure to the Dutch famine of 1944–1945 determined subsequent obesity. Further evaluation is needed as unresolved questions remain about the possible impact of social class differences in fertility decline during the famine and because being overweight is now defined by a Body Mass Index (BMI: kg/m2) from 25 to <30 and obesity by a BMI of 30 or more.
Methods
We studied heights and weights of 371,100 men in the Netherlands born between 1943 and 1947 and examined for military service at age 19. This group includes men with and without prenatal exposure to the Dutch famine.
Results
There was a 1.3-fold increase in the risk of being overweight or obese in young adults at age 19 after prenatal famine exposure in early gestation. The increase was only seen in sons of manual workers born in the large cities of Western Netherlands and not among those born in smaller cities or rural areas in the West. Social class differentials in fertility decline during the famine did not bias study results.
Conclusions
The long-term adverse impact of prenatal famine on later life type 2 diabetes and mortality through age 63 is already showing at age 19 in this population as a significant increase in overweight risk.
Publisher
Springer Science and Business Media LLC
Subject
Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Medicine (miscellaneous)
Reference31 articles.
1. Lumey LH, Khalangot MD, Vaiserman AM. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3:787–94.
2. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet. 1998;351:173–7.
3. Lumey LH, Stein AD, Kahn HS. Food restriction during gestation and impaired fasting glucose or glucose tolerance and type 2 diabetes mellitus in adulthood: evidence from the Dutch Hunger Winter Families Study. J Dev Orig Health Dis. 2009;1:S164.
4. Thurner S, Klimek P, Szell M, Duftschmid G, Endel G, Kautzky-Willer A, et al. Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century. Proc Natl Acad Sci U.S.A. 2013;110:4703–7.
5. Li C, Lumey LH. Exposure to the Chinese famine of 1959–61 in early life and long-term health conditions: a systematic review and meta-analysis. Int J Epidemiol. 2017;46:1157–70.