GBA-AAV mitigates sleep disruptions and motor deficits in mice with REM sleep behavior disorder

Author:

Chen Ying,Xie Wei-Ye,Xia Dong,Zhang Mu-TianORCID,Sun Yan-Rui,Duan Wen-Xiang,Shen Yun,Wang Fen,Qu Wei-Min,Huang Zhi-Li,Liu Chun-FengORCID

Abstract

AbstractSleep disturbances, including rapid eye movement sleep behavior disorder (RBD), excessive daytime sleepiness, and insomnia, are common non-motor manifestations of Parkinson’s disease (PD). Little is known about the underlying mechanisms, partly due to the inability of current rodent models to adequately mimic the human PD sleep phenotype. Clinically, increasing studies have reported that variants of the glucocerebrosidase gene (GBA) increase the risk of PD. Here, we developed a mouse model characterized by sleep–wakefulness by injecting α-synuclein preformed fibronectin (PFF) into the sublaterodorsal tegmental nucleus (SLD) of GBA L444P mutant mice and investigated the role of the GBA L444P variant in the transition from rapid eye movement sleep behavior disorder to PD. Initially, we analyzed spectral correlates of REM and NREM sleep in GBA L444P mutant mice. Importantly, EEG power spectral analysis revealed that GBA L444P mutation mice exhibited reduced delta power during non-rapid eye movement (NREM) sleep and increased theta power (8.2–10 Hz) in active rapid eye movement (REM) sleep phases. Our study revealed that GBA L444P-mutant mice, after receiving PFF injections, exhibited increased sleep fragmentation, significant motor and cognitive dysfunctions, and loss of dopaminergic neurons in the substantia nigra. Furthermore, the over-expression of GBA-AAV partially improved these sleep disturbances and motor and cognitive impairments. In conclusion, we present the initial evidence that the GBA L444P mutant mouse serves as an essential tool in understanding the complex sleep disturbances associated with PD. This model further provides insights into potential therapeutic approaches, particularly concerning α-synuclein accumulation and its subsequent pathological consequences.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3