Potential of animal models for advancing the understanding and treatment of pain in Parkinson’s disease

Author:

Buhidma YazeadORCID,Rukavina Katarina,Chaudhuri Kallol Ray,Duty SusanORCID

Abstract

AbstractPain is a commonly occurring non-motor symptom of Parkinson’s disease (PD). Treatment of pain in PD remains less than optimal and a better understanding of the underlying mechanisms would facilitate discovery of improved analgesics. Animal models of PD have already proven helpful for furthering the understanding and treatment of motor symptoms of PD, but could these models offer insight into pain in PD? This review addresses the current position regarding pain in preclinical models of PD, covering the face and predictive validity of existing models and their use so far in advancing understanding of the mechanisms contributing to pain in PD. While pain itself is not usually measured in animals, nociception in the form of thermal, mechanical or chemical nociceptive thresholds offers a useful readout, given reduced nociceptive thresholds are commonly seen in PD patients. Animal models of PD including the reserpine-treated rat and neurodegenerative models such as the MPTP-treated mouse and 6-hydroxydopamine (6-OHDA)-treated rat each exhibit reduced nociceptive thresholds, supporting face validity of these models. Furthermore, some interventions known clinically to relieve pain in PD, such as dopaminergic therapies and deep brain stimulation of the subthalamic nucleus, restore nociceptive thresholds in one or more models, supporting their predictive validity. Mechanistic insight gained already includes involvement of central and spinal dopamine and opioid systems. Moving forward, these preclinical models should advance understanding of the cellular and molecular mechanisms underlying pain in PD and provide test beds for examining the efficacy of novel analgesics to better treat this debilitating non-motor symptom.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3