Abstract
AbstractThe principal hallmark of Parkinson’s disease (PD) is the selective neurodegeneration of dopaminergic neurones. Mounting evidence suggests that astrocytes may contribute to dopaminergic neurodegeneration through decreased homoeostatic support and deficient neuroprotection. In this study, we generated induced pluripotent stem cells (iPSC)-derived astrocytes from PD patients with LRRK2(G2019S) mutation and healthy donors of the similar age. In cell lines derived from PD patients, astrocytes were characterised by a significant decrease in S100B and GFAP-positive astrocytic profiles associated with marked decrease in astrocyte complexity. In addition, PD-derived astrocytes demonstrated aberrant mitochondrial morphology, decreased mitochondrial activity and ATP production along with an increase of glycolysis and increased production of reactive oxygen species. Taken together, our data indicate that astrocytic asthenia observed in patient-derived cultures with LRRK2(G2019S) mutation may contribute to neuronal death through decreased homoeostatic support, elevated oxidative stress and failed neuroprotection.
Funder
Eusko Jaurlaritza
Ministerio de Economía y Competitividad
Ministry of Economy and Competitiveness | Instituto de Salud Carlos III
BIOEF, Fundación Vasca De Innovación E Investigación Sanitaria CIBERNED, Centro de Investigación Biomedica en Red Enfermedades Neurodegenerativas
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Clinical Neurology,Neurology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献