Cognition as a mediator for gait and balance impairments in GBA-related Parkinson’s disease

Author:

Morris RosieORCID,Martini Douglas N.,Ramsey Katrina,Kelly Valerie E.,Smulders Katrijn,Hiller Amie,Chung Kathryn A.,Hu Shu-Ching,Zabetian Cyrus P.ORCID,Poston Kathleen L.ORCID,Mata Ignacio F.ORCID,Edwards Karen L.,Lapidus Jodi,Cholerton BrennaORCID,Montine Thomas J.,Quinn Joseph F.,Horak Fay

Abstract

AbstractThe extent to which the heterogeneity of gait and balance problems in PD may be explained by genetic variation is unknown. Variants in the glucocerebrosidase (GBA) gene are the strongest known genetic risk factor for PD and are associated with greater motor and cognitive severity. However, the impact of GBA variants on comprehensive measures of gait and balance and their relationship to cognition remains unknown. We aimed to determine differences in gait and balance impairments in those with and without GBA variants (mutation carriers and E326K polymorphism) and explore direct and indirect effects of GBA status on gait, balance, and cognition. 332 participants, 43 of whom had GBA variants, were recruited. Participants completed a comprehensive, objective assessment of gait and standing balance using body-worn inertial sensors. Group differences in gait and balance between PD with and without GBA variants were assessed with linear regression, adjusting for age, gender, clinical testing site, disease duration, and apolipoprotein E (APOE) ɛ4 status. Structural equation modeling (SEM) explored direct relationships between GBA status and gait and balance and indirect relationships between GBA status and gait and balance via cognition. The GBA variant group had more impaired gait (pace and variability) and balance (sway area/jerk and sway velocity), than the non-GBA variant group. SEM demonstrated cognition as a mediator of GBA status on gait and balance. The close relationships among GBA, gait/balance, and cognition suggest potential for novel therapeutics to target the GBA pathway and/or cognition to improve mobility in PD GBA variants.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3