A summary index derived from Kinect to evaluate postural abnormalities severity in Parkinson’s Disease patients

Author:

Hong RonghuaORCID,Zhang Tianyu,Zhang Zhuoyu,Wu Zhuang,Lin Ao,Su Xiaoyun,Jin Yue,Gao Yichen,Peng Kangwen,Li Lixi,Pan Lizhen,Zhi Hongping,Guan QiangORCID,Jin LingjingORCID

Abstract

AbstractPostural abnormalities are common disabling motor complications affecting patients with Parkinson’s disease (PD). We proposed a summary index for postural abnormalities (IPA) based on Kinect depth camera and explored the clinical value of this indicator. Seventy individuals with PD and thirty age-matched healthy controls (HCs) were enrolled. All participants were tested using a Kinect-based system with IPA automatically obtained by algorithms. Significant correlations were detected between IPA and the Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) total score (rs = 0.369, p = 0.002), MDS-UPDRS-III total score (rs = 0.431, p < 0.001), MDS-UPDRS-III 3.13 score (rs = 0.573, p < 0.001), MDS-UPDRS-III-bradykinesia score (rs = 0.311, p = 0.010), the 39-item Parkinson’s Disease Questionnaire (PDQ-39) (rs = 0.272, p = 0.0027) and the Berg Balance Scale (BBS) score (rs = −0.350, p = 0.006). The optimal cut-off value of IPA for distinguishing PD from HCs was 12.96 with a sensitivity of 97.14%, specificity of 100.00%, area under the curve (AUC) of 0.999 (0.997–1.002, p < 0.001), and adjusted AUC of 0.998 (0.993–1.000, p < 0.001). The optimal cut-off value of IPA for distinguishing between PD with and without postural abnormalities was 20.14 with a sensitivity, specificity, AUC and adjusted AUC of 77.78%, 73.53%, 0.817 (0.720–0.914, p < 0.001), and 0.783 (0.631–0.900, p < 0.001), respectively. IPA was significantly correlated to the clinical manifestations of PD patients, and could reflect the global severity of postural abnormalities in PD with important value in distinguishing PD from HCs and distinguishing PD with postural abnormalities from those without.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3