Abstract
AbstractTechnological advances of Deep Brain Stimulation (DBS) within the subthalamic nucleus (STN) for Parkinson’s disease (PD) provide increased programming options with higher programming burden. Reducing the effort of DBS optimization requires novel programming strategies. The objective of this study was to evaluate the feasibility of a semi-automatic algorithm-guided-programming (AgP) approach to obtain beneficial stimulation settings for PD patients with directional DBS systems. The AgP evaluates iteratively the weighted combination of sensor and clinician assessed responses of multiple PD symptoms to suggested DBS settings until it converges to a final solution. Acute clinical effectiveness of AgP DBS settings and DBS settings that were found following a standard of care (SoC) procedure were compared in a randomized, crossover and double-blind fashion in 10 PD subjects from a single center. Compared to therapy absence, AgP and SoC DBS settings significantly improved (p = 0.002) total Unified Parkinson’s Disease Rating Scale III scores (median 69.8 interquartile range (IQR) 64.6|71.9% and 66.2 IQR 58.1|68.2%, respectively). Despite their similar clinical results, AgP and SoC DBS settings differed substantially. Per subject, AgP tested 37.0 IQR 34.0|37 settings before convergence, resulting in 1.7 IQR 1.6|2.0 h, which is comparable to previous reports. Although AgP long-term clinical results still need to be investigated, this approach constitutes an alternative for DBS programming and represents an important step for future closed-loop DBS optimization systems.
Funder
Boston Scientific Corporation
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Neurology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献