Digital outcome measures from smartwatch data relate to non-motor features of Parkinson’s disease

Author:

Schalkamp Ann-KathrinORCID,Harrison Neil A.,Peall Kathryn J.,Sandor Cynthia

Abstract

AbstractMonitoring of Parkinson’s disease (PD) has seen substantial improvement over recent years as digital sensors enable a passive and continuous collection of information in the home environment. However, the primary focus of this work has been motor symptoms, with little focus on the non-motor aspects of the disease. To address this, we combined longitudinal clinical non-motor assessment data and digital multi-sensor data from the Verily Study Watch for 149 participants from the Parkinson’s Progression Monitoring Initiative (PPMI) cohort with a diagnosis of PD. We show that digitally collected physical activity and sleep measures significantly relate to clinical non-motor assessments of cognitive, autonomic, and daily living impairment. However, the poor predictive performance we observed, highlights the need for better targeted digital outcome measures to enable monitoring of non-motor symptoms.

Funder

Alzheimer’s Research UK

Edmond J. Safra Philanthropic Foundation

Ser Cymru II Future Leader Fellowship

Health and Care Research Wales

Imperial College London

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3