Comparison of beta peak detection algorithms for data-driven deep brain stimulation programming strategies in Parkinson’s disease

Author:

Baker Sunderland K.ORCID,Radcliffe Erin M.ORCID,Kramer Daniel R.,Ojemann Steven,Case Michelle,Zarns Caleb,Holt-Becker Abbey,Raike Robert S.,Baumgartner Alexander J.ORCID,Kern Drew S.,Thompson John A.ORCID

Abstract

AbstractOscillatory activity within the beta frequency range (13–30 Hz) serves as a Parkinson’s disease biomarker for tailoring deep brain stimulation (DBS) treatments. Currently, identifying clinically relevant beta signals, specifically frequencies of peak amplitudes within the beta spectral band, is a subjective process. To inform potential strategies for objective clinical decision making, we assessed algorithms for identifying beta peaks and devised a standardized approach for both research and clinical applications. Employing a novel monopolar referencing strategy, we utilized a brain sensing device to measure beta peak power across distinct contacts along each DBS electrode implanted in the subthalamic nucleus. We then evaluated the accuracy of ten beta peak detection algorithms against a benchmark established by expert consensus. The most accurate algorithms, all sharing similar underlying algebraic dynamic peak amplitude thresholding approaches, matched the expert consensus in performance and reliably predicted the clinical stimulation parameters during follow-up visits. These findings highlight the potential of algorithmic solutions to overcome the subjective bias in beta peak identification, presenting viable options for standardizing this process. Such advancements could lead to significant improvements in the efficiency and accuracy of patient-specific DBS therapy parameterization.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

National Science Foundation

Medtronic

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3