Parkinson-causing mutations in LRRK2 impair the physiological tetramerization of endogenous α-synuclein in human neurons

Author:

Fonseca-Ornelas Luis,Stricker Jonathan M. S.,Soriano-Cruz Stephanie,Weykopf BeatriceORCID,Dettmer UlfORCID,Muratore Christina R.,Scherzer Clemens R.ORCID,Selkoe Dennis J.ORCID

Abstract

Abstractα-Synuclein (αSyn) aggregation in Lewy bodies and neurites defines both familial and ‘sporadic’ Parkinson’s disease. We previously identified α-helically folded αSyn tetramers, in addition to the long-known unfolded monomers, in normal cells. PD-causing αSyn mutations decrease the tetramer:monomer (T:M) ratio, associated with αSyn hyperphosphorylation and cytotoxicity in neurons and a motor syndrome of tremor and gait deficits in transgenic mice that responds in part to L-DOPA. Here, we asked whether LRRK2 mutations, the most common genetic cause of cases previously considered sporadic PD, also alter tetramer homeostasis. Patient neurons carrying G2019S, the most prevalent LRRK2 mutation, or R1441C each had decreased T:M ratios and pSer129 hyperphosphorylation of their endogenous αSyn along with increased phosphorylation of Rab10, a widely reported substrate of LRRK2 kinase activity. Two LRRK2 kinase inhibitors normalized the T:M ratio and the hyperphosphorylation in the G2019S and R1441C patient neurons. An inhibitor of stearoyl-CoA desaturase, the rate-limiting enzyme for monounsaturated fatty acid synthesis, also restored the αSyn T:M ratio and reversed pSer129 hyperphosphorylation in both mutants. Coupled with the recent discovery that PD-causing mutations of glucocerebrosidase in Gaucher’s neurons also decrease T:M ratios, our findings indicate that three dominant genetic forms of PD involve life-long destabilization of αSyn physiological tetramers as a common pathogenic mechanism that can occur upstream of progressive neuronal synucleinopathy. Based on αSyn’s finely-tuned interaction with certain vesicles, we hypothesize that the fatty acid composition and fluidity of membranes regulate αSyn’s correct binding to highly curved membranes and subsequent assembly into metastable tetramers.

Funder

Foundation for the National Institutes of Health

Karolinska-Harvard Collaborative Program on Parkinson’s Disease

APDA Center for Advanced Parkinson Research of Brigham & Women's Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3